Elevated Anxiety and Impaired Attention in Super-Smeller, Kv1.3 Knockout Mice

نویسندگان

  • Zhenbo Huang
  • Carlie A. Hoffman
  • Brandon M. Chelette
  • Nicolas Thiebaud
  • Debra A. Fadool
چکیده

It has long been recognized that olfaction and emotion are linked. While chemosensory research using both human and rodent models have indicated a change in emotion can contribute to olfactory dysfunction, there are few studies addressing the contribution of olfaction to a modulation in emotion. In mice, olfactory deficits have been linked with heightened anxiety levels, suggesting that there could be an inverse relationship between olfaction and anxiety. Furthermore, increased anxiety is often co-morbid with psychiatric conditions such as attention disorders. Our study aimed to investigate the roles of olfaction in modulating anxiety. Voltage-gated potassium ion channel Kv1.3 knockout mice (Kv1.3-/-), which have heightened olfaction, and wild-type (WT) mice were examined for anxiety-like behaviors using marble burying (MB), light-dark box (LDB) and elevated-plus maze (EPM) tests. Because Kv1.3-/- mice have increased locomotor activity, inattentive and hyperactive behaviors were quantified for both genotypes. Kv1.3-/- mice showed increased anxiety levels compared to their WT counterparts and administration of methylphenidate (MPH) via oral gavage alleviated their increased anxiety. Object-based attention testing indicated young and older Kv1.3-/- mice had attention deficits and treatment with MPH also ameliorated this condition. Locomotor testing through use of a metabolic chamber indicated that Kv1.3-/- mice were not significantly hyperactive and MPH treatment failed to modify this activity. Our data suggest that heightened olfaction does not necessarily lead to decreased anxiety levels, and that Kv1.3-/- mice may have behaviors associated with inattentiveness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kv1.3 Channel Gene-Targeted Deletion Produces “Super-Smeller Mice” with Altered Glomeruli, Interacting Scaffolding Proteins, and Biophysics

Mice with gene-targeted deletion of the Kv1.3 channel were generated to study its role in olfactory function. Potassium currents in olfactory bulb mitral cells from Kv1.3 null mice have slow inactivation kinetics, a modified voltage dependence, and a dampened C-type inactivation and fail to be modulated by activators of receptor tyrosine signaling cascades. Kv1.3 deletion increases expression o...

متن کامل

The Olfactory Bulb: A Metabolic Sensor of Brain Insulin and Glucose Concentrations via a Voltage-Gated Potassium Channel.

The voltage-gated potassium channel, Kv1.3, contributes a large proportion of the current in mitral cell neurons of the olfactory bulb where it assists to time the firing patterns of action potentials as spike clusters that are important for odorant detection. Gene-targeted deletion of the Kv1.3 channel, produces a "super-smeller" phenotype, whereby mice are additionally resistant to diet- and ...

متن کامل

Mitochondrial Ultrastructure and Glucose Signaling Pathways Attributed to the Kv1.3 Ion Channel

Gene-targeted deletion of the potassium channel Kv1.3 (Kv1.3(-∕-)) results in "Super-smeller" mice with a sensory phenotype that includes an increased olfactory ability linked to changes in olfactory circuitry, increased abundance of olfactory cilia, and increased expression of odorant receptors and the G-protein, Golf. Kv1.3(-∕-) mice also have a metabolic phenotype including lower body weight...

متن کامل

Odor enrichment sculpts the abundance of olfactory bulb mitral cells.

Mitral cells are the primary output cell from the olfactory bulb conveying olfactory sensory information to higher cortical areas. Gene-targeted deletion of the Shaker potassium channel Kv1.3 alters voltage-dependence and inactivation kinetics of mitral cell current properties, which contribute to the "Super-smeller" phenotype observed in Kv1.3-null mice. The goal of the current study was to de...

متن کامل

The slack sodium-activated potassium channel provides a major outward current in olfactory neurons of Kv1.3-/- super-smeller mice.

The Kv1.3 voltage-dependent potassium channel is expressed at high levels in mitral cells of the olfactory bulb (OB). Deletion of the Kv1.3 potassium channel gene (Kv1.3-/-) in mice lowers the threshold for detection of odors, increases the ability to discriminate between odors, and alters the firing pattern of mitral cells. We have now found that loss of Kv1.3 produces a compensatory increase ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2018